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Spectral theory

Let µ be a Borel probability measure on Rd . We call µ a spectral measure(resp. a
(Riesz-)frame spectral measure) if there exists a countable set Λ ⊆ Rd such that

E (Λ) := {e2πi〈λ,x〉 : λ ∈ Λ}

forms an orthogonal basis(resp. a Riesz basis/a frame) for L2(µ). In this case, Λ is
called a spectrum(resp. a (Riesz-)frame spectrum) of µ.

Particularly, if dµ = 1Ωdx for a bounded measurable set Ω and µ is a spectral measure,
then Ω is called a spectral set, which was presented by Fuglede.
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Some progress on spectral measures

Fuglede, 1974

Lattice tiles are spectral sets.

Figure: Convex tiles

Figure: The notched
cube

Figure: L-shape region

Triangle and disk are not spectral sets.
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Some progress on spectral measures

Jorgensen & Pedersen 1998

Standard 1/4 Cantor measure µ4 is a spectral measure, where

µ4(·) =
1

2
µ(4·) +

1

2
µ(4 · −2).

Standard 1/3 Cantor measure µ3 is not a spectral measure, where

µ3(·) =
1

2
µ(3·) +

1

2
µ(3 · −2).

There are many studies on spectrality and non-spectrality for some measurable sets,
self-similar and Moron measures, finite cyclic groups, p-adic fields · · · .
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Phase spectral measures

Question 1: Does a triangle or a disk or the 1/3 cantor measure admit an exponential
Riesz basis/a fourier frame? (Not known yet!)

Question 2: For those non-spectral measures µ, Does L2(µ) admit an orthogonal basis\
Fourier frame\ Riesz basis of exponential type E (Λ, ϕ) = {e2πi〈λ,ϕ(x)〉 : λ ∈ Λ}, where ϕ
is Borel measurable which is called a phase function and is not necessarily linear?

Gabardo-Lai-Oussa 2021 Question 2 can be reduced to the push forward measure of µ
under ϕ which is denoted by ϕ∗µ is a (Riesz-frame) spectral measure.

ϕ∗µ(E ) = µ(ϕ−1(E )),E ⊆ Rd , E Borel .

For convenience, we call µ a phase spectral measure if ϕ∗µ is a spectral measure.
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The characterization of phase spectral measures

Theorem (Gabardo, Lai & Oussa, 2021)

Let µ be a finite Borel measure supported on Kµ ⊂ Rd , Λ ⊆ Rd be a countable set and
let ϕ : Kµ → Rd be Borel measurable. Then

The collection E (Λ, ϕ) is an orthogonal basis/a frame/a Riesz basis for L2(µ)
m

ϕ is µ- essentially injective and E (Λ) is an orthogonal basis/a frame/a Riesz basis for L2(ϕ∗µ).

µ-essentially injecive Define µ and ϕ as above. ϕ is said to be µ-essentially injective if
there exists a Borel set N ⊆ Kµ with µ(N ) = 0 such that ϕ is injective on Kµ \ N .
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Phase spectral measures

Gabardo-Lai-Oussa 2021 1
3
-cantor measure µ3 is a phase spectral measure.

Define ϕ : K3 → K4 by ϕ(
∑∞

i=1
εi
3i

) =
∑∞

i=1
εi
4i
, εi ∈ {0, 2}. We have ϕ ∗ µ = ν4.

Holhos, 2017 Any p-ball can be transformed to a square under a measure preserving
map. So p-ball (of course any disk) is a phase spectral set.
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Phase spectral measures

We mainly study the following question raised by Gabardo-Lai-Oussa in 2021.

Question 3: Given any finite Borel measure µ on Rd , is it true that every L2(µ) can
admit some E (Λ, ϕ) as an orthogonal basis? Can we find a Borel measure that does not
admit any orthogonal basis with non-linear phase function?
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Generalization of Gabardo-Lai-Oussa’s result

Define ϕ as a mapping that can be projected into different dimensions opens up more
possibilities for us to construct spectral measures ϕ∗µ.

Theorem (F.-Zhou)

Let µ be a finite Borel measure supported on Kµ ⊆ Rn, Λ ⊆ Rd be a countable set and
let ϕ : Kµ → Rd be a Borel measurable function. Then

E (Λ, ϕ) is an orthogonal basis/a frame / a Riesz basis for L2(µ) iff ϕ is µ−essentially
injective and E (Λ) is an orthogonal basis/a frame/a Riesz basis for L2(ϕ∗µ).

• Gabardo-Lai-Oussa’s result for n = d .
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Pure type property of phase spectral measures

Theorem (He-Lai-Lau, 2013)

A spectral measure µ must be of pure type, that is, µ is a discrete measure with finite
support, a singularly continuous measure or an absolutely continuous measure with
respect to Lebesgue measure.

Proposition (F.-Zhou)

A phase spectral measure is either continuous or discrete. Specifically,

(i) Let µ be a continuous measure supported on Kµ ⊆ Rn (i.e. µ(x) = 0 for any single
point x) and let ϕ : Kµ → Rd be a µ-essentially injective function. Then ϕ∗µ is also a
continuous measure on Rd .

(ii) Let µ be a (finite) discrete measure supported on Kµ ⊆ Rn and let ϕ : Kµ → Rd be
a µ-essentially injective function. Then ϕ∗µ is also a (finite) discrete measure on Rd .
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Discrete phase spectral measures

In the following, we will discuss Question 3 in terms of discrete, singularly continuous
and absolutely continuous measures. We completely answer Question 3 for discrete
measures.

Theorem (F.-Zhou)

Let µ be a discrete measure supported on Kµ ⊆ Rn. Then
(i) If #Kµ <∞, µ is a phase spectral measure iff µ is equally weighted distribution.

(ii) If #Kµ =∞, then µ can not be a phase spectral measure.

• µ =
∑
a∈A

paδa is spectral ⇒ #A <∞ and all pa, a ∈ A are the same.
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Singularly continuous phase spectral measures

An iterated function system (IFS): a family of contraction {F1, · · · ,Fm} on Rd

associated with probabilities {p1, · · · , pm} and
∑m

i=1 pi = 1, where m ≥ 2.

An invariant attractor: E =
⋃m

i=1 Fi(E ), which is a non-empty compact set.

An invariant measure: µ(A) =
∑m

i=1 piµ(F−1
i (A)) for all Borel sets A ⊆ Rd .

no-overlap condition: µ(Fj(E ) ∩ Fi(E )) = 0 for all 1 ≤ i < j ≤ m.

Three pure type phase spectral measures 13/23



Singularly continuous phase spectral measures

Theorem (F.-Zhou)

Let µ be a Borel probability measure generated by an IFS {F0,F1 · · · ,Fm−1} with equal
probability weights. If µ satisfies the no-overlap condition, then µ is phase-spectral.

• Ik = {(i1, i2, · · · , ik) : 0 ≤ ij ≤ m − 1}, I∞ = {(i1, i2, · · · ) : 0 ≤ ij ≤ m − 1}.
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Absolutely continuous phase spectral measures

For an absolutely continuous measure, we have the following partial result.

Theorem (F.-Zhou)

Let µ be an absolutely continuous measure.
(i) If µ is a finite Lebesgue measure restricted on an open set Ω ⊆ Rn, then µ is a phase
spectral measure.

(ii)If µ is a finite and positive absolutely continuous measure supported on Kµ ⊂ R, then
µ is a phase spectral measure.
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Cartesian product spectral measures

For two bounded, measurable sets A ⊆ Rn, B ⊆ Rm, Kolountzakis (2016) posed the
following conjecture.

Conjecture (Kolountzakis, 2016)

Let A ⊂ Rn, B ⊂ Rm be two bounded, measurable sets. Then their product Ω = A× B
is a spectral set if and only if both A and B are spectral sets.

The “if” part of this conjecture is obvious. (Λ1,A) and (Λ2,B) are spectral pairs =⇒
(A× B ,Λ1 × Λ2) is a spectral pair.

The “only if” part is not trivial in the case that Λ does not have a product structure. It
was proved in some priori assumption on A = [0, 1]n (Greenfeld-Lev, 2016, 2020).
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Cartesian product spectral measures

Generalized Kolountzakis’ Conjecture µ× ν is spectral ⇔ both µ and ν are spectral.

Theorem (F.-Zhou)

Let dµ = 1Idx be a Lebesgue measure restricted on a unit cube I ⊆ Rn and let
dν = g(x)dx be an absolutely continuous measure on Rm.Then µ× ν is a spectral
measure if and only if ν is a spectral measure.

Theorem (F.-Zhou)

Let µ and ν be two finite Borel measures on Rn and Rm respectively and let Λ1 ⊆ Rn

and Λ2 ⊆ Rm be countable sets. Then µ× ν is a spectral measure with a spectrum
Λ1 × Λ2 if and only if µ is a spectral measure with a spectrum Λ1 and ν is a spectral
measure with a spectrum Λ2.
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Cartesian product phase-spectral measures

Generalized Kolountzakis’ Conjecture can be generalized to the phase spectrality of
product measures.

Question 4: Let µ and ν be two finite Borel measures on Rn and Rm respectively, is it
true that µ× ν is a phase-spectral measure with orthgonal basis E (Λ, ϕ) if and only if
both µ and ν are phase-spectral measures?

A function ϕ or a set Λ has a product structure if ϕ = ϕ1 × ϕ2 or Λ = Λ1 × Λ2.

We will partially answer Question 4 in the following three cases:
Case 1: Both Λ and ϕ have product structures;
Case 2: Λ has a product structure, whereas ϕ doesn’t;
Case 3: ϕ has a product structure, whereas Λ doesn’t.
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We give a positive answer to Question 4 for Case 1.

Theorem (F.-Zhou)

Let µ and ν be two finite Borel measures supported on Kµ ⊆ Rn and Kν ⊆ Rm

respectively. Let ϕ1 : Kµ → Rd1 , ϕ2 : Kν → Rd2 be Borel measurable and let Λ1 ⊆ Rd1

and Λ2 ⊆ Rd2 be countable sets. Denote ϕ = ϕ1 × ϕ2 and Λ = Λ1 × Λ2. Then E (ϕ,Λ)
is an orthogonal basis for L2(µ× ν) if and only if E (ϕ1,Λ1) is an orthogonal basis for
L2(µ) and E (ϕ2,Λ2) is an orthogonal basis for L2(ν).

• (µ× ν,Λ1 × Λ2) is a spectral pair iff both (µ,Λ1) and (ν,Λ2) are spectral pairs.
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Cartesian product phase spectral measures

We give a counterexample to Question 4 for Case 2.

Counterexample (F.-Zhou)

Let µ be a discrete measure define on {0, 1, 2, 3} with non-equal weights {1
8
, 1

4
, 1

2
, 1

8
},

and dν = 1[0,1]2dx Then µ× ν is supported on some pieces of square on z = {0, 1, 2, 3}.
Define

ϕ1 =


(x , y , z) z = 0

(x , 2y , z) z = 1

(x , 4y , z) z = 2

(x , y , z) z = 3

;ϕ2 =


(x , y , z) z = 0

(x , y , z) + (0, 1,−1) z = 1

(x , y , z) + (0, 3,−2) z = 2

(x , y , z) + (0, 7,−3) z = 3

and ϕ := ϕ1 ◦ ϕ2. Then ϕ∗(µ× ν) is a spectral measure. However, µ is not spectral.
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Cartesian product phase spectral measures

Under some additional conditions on µ and ν, we give a positive answer to Question 4
for Case 3.

Theorem (F.-Zhou)

For any finite Borel measures µ and ν, if there exists a µ−essentially injective function
ϕ1 such that d(ϕ1 ∗ µ) = 1Idx , where I is a unit cube and a ν-essentially injective
function ϕ2 such that ϕ2 ∗ ν is an absolutely continuous measure. Then
(ϕ1 × ϕ2)∗(µ× ν) is a spectral measure iff both ϕ1∗µ and ϕ2∗ν are spectral measures.

• 1Idx × ν with an absolutely continuous ν is a spectral measure iff ν is a spectral
measure.
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Further remarks

Based on our results, we can furtherly ask “are the following measures phase spectral?”

1.Absolutely continuous measures on Rd , d ≥ 2 are phase spectral?

2. General Borel probability measure generated by an IFS.

3. For the phase spectrality of µ× ν, how about the case that neither Λ nor ϕ has a
product structure?
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